A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.

نویسندگان

  • Xiaoxi Wang
  • Wei Li
  • Vipin Kumar
چکیده

Most of the existing fabrication techniques for tissue engineering scaffolds require the use of organic solvents that may never be fully removed even after long leaching hours. The residues of these organic solvents reduce the ability of biological cells to form new tissue. This paper presents an approach toward solvent-free fabrication of tissue engineering scaffolds. Interconnected porous structures were created using solid-state foaming and ultrasound. The material used in this study was polylactic acid (PLA) and the blowing agent was CO(2). In order to determine suitable process conditions, saturation and foaming studies were first conducted. Selected foam samples were then processed using pulsed ultrasound. The microstructures before and after the ultrasound processing were compared. It was shown that the inter-pore connectivity of the solid-state foams was substantially enhanced. The combined solid-state foaming and ultrasound processing provide a way to fabricate porous polymer for potential tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications

Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...

متن کامل

Solid-state cryomilling for porogen mixing and porous scaffold fabrication - biomed 2011.

Several widely used techniques for the fabrication of three dimensional (3D) scaffolds utilize the particulate leaching method to achieve a porous structure. This method involves the selective leaching of a mineral or an organic compound to generate pores. However, scaffolds prepared by this technique tend to exhibit limited interconnectivity. Therefore, to enhance the interconnectivity of the ...

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

Fabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications

Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...

متن کامل

Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.

Macroporous scaffolds composed of biodegradable polymers have found extensive use as three-dimensional substrates either for in vitro cell seeding followed by transplantation, or as conductive substrates for direct implantation in vivo. Methods abound for creation of macroporous scaffolds for tissue engineering, and common methods typically employ a solid porogen within a three-dimensional poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 27 9  شماره 

صفحات  -

تاریخ انتشار 2006